**NEW YORK**

**FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM**

<table>
<thead>
<tr>
<th>Scientific name:</th>
<th>Monopterus albus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common names:</td>
<td>Asian Swamp Eel</td>
</tr>
<tr>
<td>Native distribution:</td>
<td>Asia from northern India and Burma to China, Asiatic Russia, Japan, Indo-Malayan archipelago</td>
</tr>
<tr>
<td>Date assessed:</td>
<td>06/07/2013</td>
</tr>
<tr>
<td>Assessors:</td>
<td>D. Adams &amp; J. Corser</td>
</tr>
<tr>
<td>Reviewers:</td>
<td></td>
</tr>
<tr>
<td>Date Approved:</td>
<td></td>
</tr>
</tbody>
</table>

**New York Invasiveness Rank:** Moderate (Relative Maximum Score 50.00-69.99)

**Distribution and Invasiveness Rank (Obtain from PRISM invasiveness ranking form)**

<table>
<thead>
<tr>
<th>Status of this species in each PRISM:</th>
<th>Current Distribution</th>
<th>PRISM Invasiveness Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adirondack Park Invasive Program</td>
<td>Not Present</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>2 Capital/Mohawk</td>
<td>Not Present</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>3 Catskill Regional Invasive Species Partnership</td>
<td>Not Present</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>4 Finger Lakes</td>
<td>Not Present</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>5 Long Island Invasive Species Management Area</td>
<td>Not Present</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>6 Lower Hudson</td>
<td>Not Present</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>7 Saint Lawrence/Eastern Lake Ontario</td>
<td>Not Present</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>8 Western New York</td>
<td>Not Present</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

**Invasiveness Ranking Summary**

<table>
<thead>
<tr>
<th>(see details under appropriate sub-section)</th>
<th>Total (Total Answered*) Possible</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecological impact</td>
<td>30 (30)</td>
<td>9</td>
</tr>
<tr>
<td>Biological characteristic and dispersal ability</td>
<td>30 (30)</td>
<td>26</td>
</tr>
<tr>
<td>Ecological amplitude and distribution</td>
<td>30 (30)</td>
<td>12</td>
</tr>
<tr>
<td>Difficulty of control</td>
<td>10 (10)</td>
<td>6</td>
</tr>
<tr>
<td>Outcome score</td>
<td>100 (100)‡</td>
<td>53a</td>
</tr>
<tr>
<td>Relative maximum score †</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>New York Invasiveness Rank §</td>
<td>Moderate (Relative Maximum Score 50.00-69.99)</td>
<td></td>
</tr>
</tbody>
</table>

* For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places. §Very High >80.00; High 70.00–80.00; Moderate 50.00–69.99; Low 40.00–49.99; Insignificant <40.00

**A. DISTRIBUTION (KNOWN/POTENTIAL): Summarized from individual PRISM forms**

A1.1. Has this species been documented in NY? (reliable source; voucher not required)

- Yes – continue to A1.2
- No – continue to A2.1; Yes X NA; Yes X USA

A1.2. In which PRISMs is it known (see inset map)?

- Adirondack Park Invasive Program
- Capital/Mohawk
- Catskill Regional Invasive Species Partnership
- Finger Lakes
- Long Island Invasive Species Management Area
- Lower Hudson
A2.0. Is this species listed on the Federal Injurious Fish and Wildlife list?
☑ Yes – the species will automatically be listed as Prohibited, no further assessment required.
☒ No – continue to A2.1

A2.1. What is the likelihood that this species will occur and persist given the climate in the following PRISMs? (obtain from PRISM invasiveness ranking form and/or Climatch score)

- Unlikely Adirondack Park Invasive Program
- Unlikely Capital/Mohawk
- Unlikely Catskill Regional Invasive Species Partnership
- Unlikely Finger Lakes
- Moderately Likely Long Island Invasive Species Management Area
- Moderately Likely Lower Hudson
- Unlikely Saint Lawrence/Eastern Lake Ontario
- Unlikely Western New York

If the species does not occur and is not likely to survive and reproduce within any of the PRISMs, then stop here as there is no need to assess the species.

A2.2. What is the current distribution of the species in each PRISM? (obtain rank from PRISM invasiveness ranking forms)

- Adirondack Park Invasive Program Not Present
- Capital/Mohawk Not Present
- Catskill Regional Invasive Species Partnership Not Present
- Finger Lakes Not Present
- Long Island Invasive Species Management Area Not Present
- Lower Hudson Not Present
- Saint Lawrence/Eastern Lake Ontario Not Present
- Western New York Not Present

A2.3. Describe the potential or known suitable habitats within New York. Natural habitats include all habitats not under active human management. Managed habitats are indicated with an asterisk.

<table>
<thead>
<tr>
<th>Aquatic Habitats</th>
<th>Wetland Habitats</th>
<th>Upland Habitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine</td>
<td>Salt/brackish marshes</td>
<td>Cultivated*</td>
</tr>
<tr>
<td>Salt/brackish waters</td>
<td>Freshwater marshes</td>
<td>Grasslands/old fields</td>
</tr>
<tr>
<td>Freshwater tidal</td>
<td>Peatlands</td>
<td>Shrublands</td>
</tr>
<tr>
<td>Rivers/streams</td>
<td>Shrub swamps</td>
<td>Forests/woodlands</td>
</tr>
<tr>
<td>Natural lakes and ponds</td>
<td>Forested wetlands/riparian</td>
<td>Alpine</td>
</tr>
<tr>
<td>Vernal pools</td>
<td>Ditches*</td>
<td>Roadsides*</td>
</tr>
<tr>
<td>Reservoirs/impoundments*</td>
<td>Beaches/or coastal dunes</td>
<td>Cultural*</td>
</tr>
</tbody>
</table>

Other potential or known suitable habitats within New York:

Documentation:
Sources of information:
Fuller et al., 2013
NEW YORK

FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

Fuller et al., 2013; www.fishbase.org; Shafland et al., 2010

B. INVASIVENESS RANKING

1. ECOLOGICAL IMPACT

1.1. Impact on Ecosystem Processes and System-wide Parameters (e.g., water cycle, energy cycle, nutrient and mineral dynamics, light availability, or geomorphological changes (erosion and sedimentation rates).

A. No perceivable impact on ecosystem processes based on research studies, or the absence of impact information if a species is widespread (>10 occurrences in minimally managed areas), has been well-studied (>10 reports/publications), and has been present in the northeast for >100 years. 0

B. Influences ecosystem processes to a minor degree, has a perceivable but mild influence 3

C. Significant alteration of ecosystem processes 7

D. Major, possibly irreversible, alteration or disruption of ecosystem processes 10

U. Unknown

Score 3

Documentation:
Identify ecosystem processes impacted (or if applicable, justify choosing answer A in the absence of impact information)
Asian swamp eels consume a wide variety of invertebrate and vertebrate prey including fish. Host of macroparasites. Shafland et al. (2010) concluded that this species is unlikely to perpetuate major ecological disturbances in Florida.
Sources of information:
Fuller et al., 2013; www.fishbase.org; Shafland et al., 2010

1.2. Impact on Natural Habitat/ Community Composition

A. No perceived impact; causes no apparent change in native populations 0

B. Influences community composition (e.g., reduces the number of individuals of one or more native species in the community) 3

C. Significantly alters community composition (e.g., produces a significant reduction in the population size of one or more native species in the community) 7

D. Causes major alteration in community composition (e.g., results in the extirpation of one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community) 10

U. Unknown

Score 3

Documentation:
Identify type of impact or alteration:
Claims that this species would over-run aquatic ecosystems in Florida have largely been proven false. they have minimal impacts on established fish communities.
Sources of information:
Shafland et al., 2010).

1.3. Impact on other species or species groups, including cumulative impact of this species on other organisms in the community it invades. (e.g., interferes with native predator/ prey dynamics; injurious components/ spines; reduction in spawning; hybridizes with a native species; hosts a non-native disease which impacts a native species)

A. Negligible perceived impact 0

B. Minor impact (e.g. impacts 1 species, <20% population decline, limited host damage) 3

C. Moderate impact (e.g. impacts 2-3 species and/ or 20-29% population decline of any 1 species, kills host in 2-5 years, ) 7
### Section One

#### D. Severe impact on other species or species groups (e.g. impacts >3 species and/or ≥30% population decline of any 1 species, kills host within 2 years, extirpation)

**Score** 10

**Documentation:**
Identify type of impact or alteration:
Carnivorous. Potential to impact native fishes and crustaceans directly. Host of macroparasites. In Georgia this species is at tertiary or lower trophic level on par with gambusia, pomoxis of the food web structure in a pond. Thus they are not piscivorous, but rather considered broad insectivores.

**Sources of information:**
Fuller et al., 2013; www.fishbase.org; Straight et al., 2005.

---

#### U. Unknown

**Score** 3

**Documentation:**
Identify type of impact or alteration:

---

#### Section Two

#### 2. Biological Characteristics and Dispersal Ability

##### 2.1. Mode and rate of reproduction (provisional thresholds, more investigation needed)

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No reproduction (e.g. sterile with no sexual or asexual reproduction).</td>
</tr>
<tr>
<td>1</td>
<td>Limited reproduction (e.g., intrinsic rate of increase &lt;10%, low fecundity, complete one life cycle)</td>
</tr>
<tr>
<td>2</td>
<td>Moderate reproduction (e.g., intrinsic rate of increase between 10-30%, moderate fecundity, complete 2-3 life cycles)</td>
</tr>
<tr>
<td>4</td>
<td>Abundant reproduction (e.g., intrinsic rate of increase &gt;30%, parthenogenesis, large egg masses, complete &gt; 3 life cycles)</td>
</tr>
<tr>
<td>1</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

**Documentation:**
Describe key reproductive characteristics:
This species is a sequential hermaphrodite where all individuals are born and mature as females and some later transform into males. The population tends to be heavily skewed towards females, which reduces abundance and is apparently an adaptation for surviving drought.

**Sources of information:**
Straight et al., 2005; Fuller et al., 2013; Shafland et al., 2010.

##### 2.2. Migratory behavior

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Always migratory in its native range</td>
</tr>
<tr>
<td>2</td>
<td>Non-migratory or facultative migrant in its native range</td>
</tr>
<tr>
<td>2</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

**Documentation:**
Describe migratory behavior:
Non-migratory.

**Sources of information:**
Fuller et al., 2013; www.fishbase.org

##### 2.3. Biological potential for colonization by long-distance dispersal/ movement (e.g., veligers, resting stage eggs, glochidia)

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No long-distance dispersal/movement mechanisms</td>
</tr>
<tr>
<td>1</td>
<td>Adaptations exist for long-distance dispersal, but studies report that most individuals (90%) establish territories within 5 miles of natal origin or within a distance twice the home range of the typical individual, and tend not to cross major barriers such as dams and watershed divides</td>
</tr>
</tbody>
</table>

---

**Total Possible** 30

**Section One Total** 9

---

**NEW YORK**

**FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM**

---

**4**
### New York
#### Fish & Aquatic Invertebrate Invasiveness Ranking Form

- **C.** Adaptations exist for long-distance dispersal, movement and evidence that offspring often disperse greater than 5 miles of natal origin or greater than twice the home range of typical individual and will cross major barriers such as dams and watershed divides. **Score:** 2

  **Documentation:**
  Identify dispersal mechanisms:
  This species is capable of breathing air. using atmospheric oxygen absorbed via a vascularized breathing apparatus in the back of their mouths. This species is considered sedentary and slow to spread. blocked from dispersal by barriers.

  **Sources of information:**
  Fuller et al., 2013; www.fishbase.org; Shafland et al., 2010.

- **U.** Unknown **Score:** 1

### 2.4. Practical potential to be spread by human activities, both directly and indirectly – possible vectors include: commercial bait sales, deliberate illegal stocking, aquaria releases, boat trailers, canals, ballast water exchange, live food trade, rehabilitation, pest control industry, aquaculture escapes, etc.)

<table>
<thead>
<tr>
<th>A.</th>
<th>Does not occur</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.</td>
<td>Low (human dispersal to new areas occurs almost exclusively by direct means and is infrequent or inefficient)</td>
<td>1</td>
</tr>
<tr>
<td>C.</td>
<td>Moderate (human dispersal to new areas occurs by direct and indirect means to a moderate extent)</td>
<td>2</td>
</tr>
<tr>
<td>D.</td>
<td>High (opportunities for human dispersal to new areas by direct and indirect means are numerous, frequent, and successful)</td>
<td>4</td>
</tr>
</tbody>
</table>

  **Documentation:**
  Identify dispersal mechanisms:
  Its introduction into Florida was probably the result of either an aquarium release or a fish farm escape. Genetic analysis indicates that there have been multiple introductions from different geographic areas. Spread by aquaculture escapes, live food trade.

  **Sources of information:**
  Fuller et al., 2013; www.fishbase.org; Collins et al., 2002.

- **U.** Unknown **Score:** 4

### 2.5. Non-living chemical and physical characteristics that increase competitive advantage (e.g., tolerance to various extremes, pH, DO, temperature, desiccation, fill vacant niche, charismatic species)

<table>
<thead>
<tr>
<th>A.</th>
<th>Possesses no characteristics that increase competitive advantage</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.</td>
<td>Possesses one characteristic that increases competitive advantage</td>
<td>4</td>
</tr>
<tr>
<td>C.</td>
<td>Possesses two or more characteristics that increase competitive advantage</td>
<td>8</td>
</tr>
</tbody>
</table>

  **Documentation:**
  Evidence of competitive ability:
  Able to live out of water for a considerable length of time, tolerant of moderate salinity levels. Tolerant of ammonia; tolerant of low oxygen conditions culturally important live food species.

  **Sources of information:**
  Fuller et al., 2013; www.fishbase.org; Schofield et al., 2009; Hill and Watson 2007; Shafland et al., 2010.

- **U.** Unknown **Score:** 8

### 2.6. Biological characteristics that increase competitive advantage (e.g., high fecundity, generalist/ broad niche space, highly evolved defense mechanisms, behavioral adaptations, piscivorous, etc.)
### New York

**Fish & Aquatic Invertebrate Invasiveness Ranking Form**

<table>
<thead>
<tr>
<th>Response</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Possesses no characteristics that increase competitive advantage</td>
<td>0</td>
</tr>
<tr>
<td>B. Possesses one characteristic that increases competitive advantage</td>
<td>4</td>
</tr>
<tr>
<td>C. Possesses two or more characteristics that increase competitive advantage</td>
<td>8</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>Score 8</td>
</tr>
</tbody>
</table>

**Documentation:**
Evidence of competitive ability:
Generalized nocturnal predator; can go long periods without food; survive drought; lives in burrows; wide diet generalist.
Sources of information:
Fuller et al., 2013; www.fishbase.org; Shafland et al., 2010.

2.7. Other species in the family and/or genus invasive in New York or elsewhere?
<table>
<thead>
<tr>
<th>Response</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No</td>
<td>0</td>
</tr>
<tr>
<td>B. Yes</td>
<td>2</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>Score 2</td>
</tr>
</tbody>
</table>

**Documentation:**
Identify species:
Introduced populations may be three genetically distinct species. Species complex needs taxonomic treatment (Collins et al., 2002).

<table>
<thead>
<tr>
<th>Total Possible</th>
<th>Section Two Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

3. **EcoLogical Amplitude and Distribution**

3.1. Current introduced distribution in the northern latitudes of USA and southern latitude of Canada (e.g., between 35 and 55 degrees).
<table>
<thead>
<tr>
<th>Response</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Not known from the northern US or southern Canada.</td>
<td>0</td>
</tr>
<tr>
<td>B. Established as a non-native in 1 northern USA state and/or southern Canadian province.</td>
<td>1</td>
</tr>
<tr>
<td>C. Established as a non-native in 2 or 3 northern USA states and/or southern Canadian provinces.</td>
<td>2</td>
</tr>
<tr>
<td>D. Established as a non-native in 4 or more northern USA states and/or southern Canadian provinces, and/or categorized as a problem species (e.g., “Invasive”) in 1 northern state or southern Canadian province.</td>
<td>3</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>Score 0</td>
</tr>
</tbody>
</table>

**Documentation:**
Identify states and provinces:
Not established in northern US, although they were found in Silver Lake in Gibbsboro NJ in 2008 and it is possible that releases occurred in the Passaic River NJ. Laboratory studies show that swamp eels stopped feeding at 14-16 degrees C and died at 8-9 degrees C.
Sources of information:
- See known introduced range at www.usda.gov, and update with information from states and Canadian provinces.
- Fuller et al., 2013; www.fishbase.org

3.2. Current introduced distribution of the species in natural areas in the eight New York State PRISMs (Partnerships for Regional Invasive Species Management)
<table>
<thead>
<tr>
<th>Response</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Established in none of the PRISMs</td>
<td>0</td>
</tr>
<tr>
<td>B. Established in 1 PRISM</td>
<td>1</td>
</tr>
</tbody>
</table>
3. Number of known, or potential (each individual possessed by a vendor or consumer), individual releases and/or release events

A. None 0
B. Few releases (e.g., <10 annually). 2
C. Regular, small scale releases (e.g., 10-99 annually). 4
D. Multiple, large scale (e.g., ≥100 annually). 6
U. Unknown

Documentation:
Describe known or potential releases:
Live food, aquaculture and aquarium fish.
Sources of information:
Fuller et al., 2013; www.fishbase.org

3.4. Current introduced population density, or distance to known occurrence, in northern USA and/or southern Canada.

A. No known populations established. 0
B. Low to moderate population density (e.g., ≤1/4 to < 1/2 native population density) with few other invasives present and/or documented in 1 or more non-adjacent state/province and/or 1 unconnected waterbody. 1
C. High or irruptive population density (e.g., ≥1/2 native population density) with numerous other invasives present and/or documented in 1 or more adjacent state/province and/or 1 connected waterbody. 2
U. Unknown

Documentation:
Describe population density:
Current status of above noted NJ populations unknown. Fish were of different size classes and were suspected to have survived multiple winters.
Sources of information:
Fuller et al., 2013; www.fishbase.org.

3.5. Number of habitats the species may invade

A. Not known to invade any natural habitats given at A2.3. 0
B. Known to occur in 2 or 3 of the habitats given at A2.3, with at least 1 or 2 natural habitat(s). 2
C. Known to occur in 4 or more of the habitats given at A2.3, with at least 3 natural habitats. 3
U. Unknown.

Documentation:
Identify type of habitats where it occurs and degree/type of impacts:
Found in hill streams to lowland wetlands, adults occur in streamlets, canals and estuaries.
They live in muddy ponds and swamps.
Sources of information:
Fuller et al., 2013; www.fishbase.org; Shafland et al., 2010.

3.6. Role of anthropogenic (human related) and natural disturbance in establishment
(e.g. water level management, man-made structures, high vehicle traffic, major storm events, etc).
A. Requires anthropogenic disturbances to establish. 0
B. May occasionally establish in undisturbed areas but can readily establish in areas with natural or anthropogenic disturbances. 2
C. Can establish independent of any known natural or anthropogenic disturbances. 3
U. Unknown. Score 2

Documentation:
Identify type of disturbance:
Primarily occupy highly disturbed, human-influenced ponds, canal systems.
Sources of information:
Fuller et al., 2013; www.fishbase.org; Shafland et al., 2010.

3.7. Climate in native range (e.g., med. to high, >5, Climatch score; within 35 to 55 degree latitude; etc.)
A. Native range does not include climates similar to New York (e.g., <10%). 0
B. Native range possibly includes climates similar to portions of New York (e.g., 10-29%). 4
C. Native range includes climates similar to those in New York (e.g., >30%). 8
U. Unknown. Score 4

Documentation:
Describe known climate similarities:
Tropical 24-28 degrees C. Native to south and southeastern Asia, from Pakistan to southern China. Established in Broward and Palm Beach counties Florida. This is primarily a tropical species, but since there is a species complex involved in the US populations and the NJ population has apparently successfully over-wintered, certain lineages may be more cold-tolerant than others, perhaps those from Japan or Russia.
Sources of information:
Fuller et al., 2013; www.fishbase.org; Shafland et al., 2010; Collins et al., 2002; Smith 2009.

Total Possible 30
Section Three Total 12

4. DIFFICULTY OF CONTROL
4.1. Re-establishment potential, nearby propagule source, known vectors of re-introduction (e.g. biological supplies, pets, aquaria, aquaculture facilities, connecting waters/ corridors, mechanized transportation, live wells, etc.)
A. No known vectors/ propagule source for re-establishment following removal. 0
B. Possible re-establishment from 1 vector/ propagule source following removal and/ or viable <24 hours. 1
C. Likely to re-establish from 2-3 vectors/ propagule sources following removal and/ or viable 2-7 days. 2
D. Strong potential for re-establishment from 4 or more vectors/ propagule sources following removal and/ or viable >7 days. 3
U. Unknown.
**NEW YORK**

**FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM**

<table>
<thead>
<tr>
<th>Score</th>
<th>Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Identify source/ vectors: Live food, aquaculture and aquarium fish. Sources of information: Fuller et al., 2013; <a href="http://www.fishbase.org">www.fishbase.org</a>; Fuller et al., 2010; Shafland et al., 2010.</td>
</tr>
</tbody>
</table>

4.2. Status of monitoring and/or management protocols for species

<table>
<thead>
<tr>
<th>Score</th>
<th>Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe protocols: Very little available for us, especially in the northern states; protocols exist in native range; rotenone and electroshocking is not recommended. Sources of information: Fuller et al., 2013; <a href="http://www.fishbase.org">www.fishbase.org</a>.</td>
</tr>
</tbody>
</table>

4.3. Status of monitoring and/or management resources (e.g. tools, manpower, travel, traps, lures, ID keys, taxonomic specialists, etc.)

<table>
<thead>
<tr>
<th>Score</th>
<th>Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe resources: DEC Fisheries. Sources of information: Fuller et al., 2013; <a href="http://www.fishbase.org">www.fishbase.org</a>;</td>
</tr>
</tbody>
</table>

4.4. Level of effort required

<table>
<thead>
<tr>
<th>Score</th>
<th>Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Identify types of control methods and time required: Not expected to survive in cold northeastern US waters, but apparently did overwinter multiple winters in NJ. Rotenone and electroshocking treatments failed to control established populations. Sources of information: Fuller et al., 2013; <a href="http://www.fishbase.org">www.fishbase.org</a>.</td>
</tr>
</tbody>
</table>
C. STATUS OF GENETIC VARIANTS AND HYBRIDS:

At the present time there is no protocol or criteria for assessing the invasiveness of genetic variants independent of the species to which they belong. Such a protocol is needed, and individuals with the appropriate expertise should address this issue in the future. Such a protocol will likely require data on cultivar fertility and identification in both experimental and natural settings.

Genetic variants of the species known to exist:

Hybrids (crosses between different parent species) should be assessed individually and separately from the parent species wherever taxonomically possible, since their invasiveness may differ from that of the parent species. An exception should be made if the taxonomy of the species and hybrids are uncertain, and species and hybrids can not be clearly distinguished in the field. In such cases it is not feasible to distinguish species and hybrids, and they can only be assessed as a single unit.

Hybrids of uncertain origin known to exist:

References for species assessment:
Fuller, P.L., Nico, L.G., Cannister, M.m & Neilson, M. 2013. Monopterus albus. USGS Nonindigenous Aquatic Species Database, Gainesville, Fl.

www.fishbase.org

Citation: The New York Fish & Aquatic Invertebrate Invasiveness Ranking Form is an adaptation of the New York Plant Invasiveness Ranking Form. The original plant form may be cited as: Jordan, M.J., G. Moore and T.W. Weldy. 2008. Invasiveness ranking system for non-native plants of New York. Unpublished. The Nature
Acknowledgments: The New York Fish and Aquatic Invertebrate Invasiveness Ranking Form incorporates components and approaches used in several other systems, cited in the references below. Valuable contributions by members of the Invasive Species Council and Invasive Species Advisory Committee were incorporated in revisions of this form. Members of the Office of Invasive Species Coordination’s Four-tier Team, who coordinated the effort, included representatives of the New York State Department of Environmental Conservation* (Division of Fish, Wildlife and Marine Resources, Division of Lands and Forests, Division of Water); The Nature Conservancy; New York Natural Heritage Program; New York Sea Grant*; Lake Champlain Sea Grant*; New York State Department of Agriculture and Markets (Division of Plant Industry and Division of Animal Industry); Cornell University (Department of Natural Resources and Department of Entomology); New York State Nursery and Landscape Association; New York Farm Bureau; Brooklyn Botanic Garden; Pet Industry Joint Advisory Council*; Trout Unlimited*; United States Department of Agriculture Animal and Plant Health Inspection Service (Plant Protection and Quarantine and Wildlife Services); New York State Department of Transportation; State University of New York at Albany and Plattsburgh*; and Cary Institute of Ecosystem Studies. Those organizations listed with an asterisk comprised the Fish and Aquatic Invertebrate Working Group.

References for ranking form:


Natural Resources Board Order No. IS-34-06, Invasive Species Identification, Classification and Control. 2008. Wisconsin Department of Natural Resources, Madison Wisconsin.

Standard Methodology to Assess the Risks From Non-native Species Considered Possible Problems to the Environment. 2005. DEFRA.
