NEW YORK

FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

Scientific name: Bellamya (Cipangopaludina) chinensis
Common names: Chinese Mystery Snail
Native distribution: Burma, Thailand, South Vietnam, China, Korea, Japan, Philippines, Java.
Date assessed: 1/30/2013
Assessors: D. Adams and E. Schwartzberg
Reviewers:
Date Approved:

Form version date: 3 January 2013

New York Invasiveness Rank: Very High (Relative Maximum Score >80.00)

Distribution and Invasiveness Rank (Obtain from PRISM invasiveness ranking form)

<table>
<thead>
<tr>
<th>Status of this species in each PRISM:</th>
<th>Current Distribution</th>
<th>PRISM Invasiveness Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adirondack Park Invasive Program</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Capital/Mohawk</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Catskill Regional Invasive Species Partnership</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Finger Lakes</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Long Island Invasive Species Management Area</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Lower Hudson</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Saint Lawrence/Eastern Lake Ontario</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Western New York</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Invasiveness Ranking Summary

<table>
<thead>
<tr>
<th>Invasiveness Ranking Summary (see details under appropriate sub-section)</th>
<th>Total (Total Answered*) Possible</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecological impact</td>
<td>30 (30)</td>
<td>21</td>
</tr>
<tr>
<td>Biological characteristic and dispersal ability</td>
<td>30 (30)</td>
<td>27</td>
</tr>
<tr>
<td>Ecological amplitude and distribution</td>
<td>30 (30)</td>
<td>28</td>
</tr>
<tr>
<td>Difficulty of control</td>
<td>10 (10)</td>
<td>7</td>
</tr>
<tr>
<td>Outcome score</td>
<td>100 (100)†</td>
<td>83 ²</td>
</tr>
<tr>
<td>Relative maximum score †</td>
<td></td>
<td>83.00</td>
</tr>
</tbody>
</table>

New York Invasiveness Rank § Very High (Relative Maximum Score >80.00)

* For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.”
†Calculated as 100(a/b) to two decimal places.
§Very High >80.00; High 70.00–80.00; Moderate 50.00–69.99; Low 40.00–49.99; Insignificant <40.00

A. DISTRIBUTION (KNOWN/POTENTIAL): Summarized from individual PRISM forms

- A1.1. Has this species been documented in NY? (reliable source; voucher not required)
 - ☒ Yes – continue to A1.2
 - ☐ No – continue to A2.1; Yes ☐ NA; Yes ☒ USA

- A1.2. In which PRISMs is it known (see inset map)?
 - ☒ Adirondack Park Invasive Program
 - ☐ Capital/Mohawk
 - ☒ Catskill Regional Invasive Species Partnership
 - ☒ Finger Lakes
 - ☒ Long Island Invasive Species Management Area
 - ☒ Lower Hudson
 - ☐ Saint Lawrence/Eastern Lake Ontario
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

Western New York

Documentation:
Sources of information:
imapinvasives, 2013; Kipp et al., 2013.

A2.0. Is this species listed on the Federal Injurious Fish and Wildlife list?
☐ Yes – the species will automatically be listed as Prohibited, no further assessment required.
☐ No – continue to A2.1

A2.1. What is the likelihood that this species will occur and persist given the climate in the following PRISMs? (obtain from PRISM invasiveness ranking form and/or Climatch score)
Not Assessed Adirondack Park Invasive Program
Not Assessed Capital/Mohawk
Not Assessed Catskill Regional Invasive Species Partnership
Not Assessed Finger Lakes
Not Assessed Long Island Invasive Species Management Area
Not Assessed Lower Hudson
Not Assessed Saint Lawrence/Eastern Lake Ontario
Not Assessed Western New York

Documentation:
Sources of information (e.g.: distribution models, literature, expert opinions):

If the species does not occur and is not likely to survive and reproduce within any of the PRISMs, then stop here as there is no need to assess the species.

A2.2. What is the current distribution of the species in each PRISM? (obtain rank from PRISM invasiveness ranking forms)
Adirondack Park Invasive Program Not Assessed
Capital/Mohawk Not Assessed
Catskill Regional Invasive Species Partnership Not Assessed
Finger Lakes Not Assessed
Long Island Invasive Species Management Area Not Assessed
Lower Hudson Not Assessed
Saint Lawrence/Eastern Lake Ontario Not Assessed
Western New York Not Assessed

Documentation:
Sources of information:

A2.3. Describe the potential or known suitable habitats within New York. Natural habitats include all habitats not under active human management. Managed habitats are indicated with an asterisk.

Aquatic Habitats
☐ Marine
☐ Salt/brackish waters
☐ Freshwater tidal
☐ Rivers/streams
☐ Natural lakes and ponds
☐ Vernal pools
☐ Reservoirs/impoundments*

Wetland Habitats
☐ Salt/brackish marshes
☐ Freshwater marshes
☐ Peatlands
☐ Shrub swamps
☐ Forested wetlands/riparian
☐ Ditches*
☐ Beaches/or coastal dunes

Upland Habitats
☐ Cultivated*
☐ Grasslands/old fields
☐ Shrublands
☐ Forests/woodlands
☐ Alpine
☐ Roadsides*
☐ Cultural*

Other potential or known suitable habitats within New York:

Documentation:
Sources of information:
GISD, 2013; Kipp et al., 2013.
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

B. INVASIVENESS RANKING

1. ECOLOGICAL IMPACT

1.1. Impact on Ecosystem Processes and System-wide Parameters (e.g., water cycle, energy cycle, nutrient and mineral dynamics, light availability, or geomorphological changes (erosion and sedimentation rates).

A. No perceivable impact on ecosystem processes based on research studies, or the absence of impact information if a species is widespread (>10 occurrences in minimally managed areas), has been well-studied (>10 reports/publications), and has been present in the northeast for >100 years.
B. Influences ecosystem processes to a minor degree, has a perceivable but mild influence
C. Significant alteration of ecosystem processes
D. Major, possibly irreversible, alteration or disruption of ecosystem processes
U. Unknown

Score 7

Documentation:
Identify ecosystem processes impacted (or if applicable, justify choosing answer A in the absence of impact information)
Result in increased water column N:P ratio, possibly because of a low P excretion rate relative to native snail species.
Sources of information:
Johnson et al., 2009.

1.2. Impact on Natural Habitat/ Community Composition

A. No perceived impact; causes no apparent change in native populations
B. Influences community composition (e.g., reduces the number of individuals of one or more native species in the community)
C. Significantly alters community composition (e.g., produces a significant reduction in the population size of one or more native species in the community)
D. Causes major alteration in community composition (e.g., results in the extirpation of one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community)
U. Unknown

Score 7

Documentation:
Identify type of impact or alteration:
Reduce periphyton biomass, compete with native snail, negatively affecting abundance and biomass. May have resulted in decreased populations of native snails (Solomon et al., 2010)
Sources of information:
Johnson et al., 2009; Solomon et al., 2010.

1.3. Impact on other species or species groups, including cumulative impact of this species on other organisms in the community it invades. (e.g., interferes with native predator/prey dynamics; injurious components/spines; reduction in spawning; hybridizes with a native species; hosts a non-native disease which impacts a native species)

A. Negligible perceived impact
B. Minor impact (e.g. impacts 1 species, <20% population decline, limited host damage)
C. Moderate impact (e.g. impacts 2-3 species and/or 20-29% population decline of any 1 species, kills host in 2-5 years, ,)
D. Severe impact on other species or species groups (e.g. impacts >3 species and/or ≥30% population decline of any 1 species, kills host within 2 years, extirpation)

Score 7
New York

Fish & Aquatic Invertebrate Invasiveness Ranking Form

1. Unknown

<table>
<thead>
<tr>
<th>Documentation:</th>
<th>Score</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify type of impact or alteration:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compete with native snail, negatively affecting abundance and biomass. realized impact in Great Lakes described as benign (Kipp et al., 2013). High densities associated with low densities of native species (Solomon et al., 2010).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sources of information:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson et al., 2009; Kipp et al., 2013; Solomon et al., 2010.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Possible: 30

Section One Total: 21

2. Biological Characteristics and Dispersal Ability

2.1. Mode and rate of reproduction (provisional thresholds, more investigation needed)

<table>
<thead>
<tr>
<th>A.</th>
<th>No reproduction (e.g. sterile with no sexual or asexual reproduction).</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.</td>
<td>Limited reproduction (e.g., intrinsic rate of increase <10%, low fecundity, complete one life cycle)</td>
<td>1</td>
</tr>
<tr>
<td>C.</td>
<td>Moderate reproduction (e.g., intrinsic rate of increase between 10-30%, moderate fecundity, complete 2-3 life cycles)</td>
<td>2</td>
</tr>
<tr>
<td>D.</td>
<td>Abundant reproduction (e.g., intrinsic rate of increase >30%, parthenogenesis, large egg masses, complete > 3 life cycles)</td>
<td>4</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown</td>
<td>2</td>
</tr>
</tbody>
</table>

Documentation:

- Describe key reproductive characteristics:
 - Sexual, viviparous, and produce about 65 offspring per year.

Sources of information:

- GISD, 2013; Solomon et al., 2010.

Score: 2

2.2. Migratory behavior

<table>
<thead>
<tr>
<th>A.</th>
<th>Always migratory in its native range</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.</td>
<td>Non-migratory or facultative migrant in its native range</td>
<td>2</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown</td>
<td>2</td>
</tr>
</tbody>
</table>

Documentation:

- Describe migratory behavior:
 - non migratory

Sources of information:

Score: 2

2.3. Biological potential for colonization by long-distance dispersal/ movement (e.g., veligers, resting stage eggs, glochidia)

<table>
<thead>
<tr>
<th>A.</th>
<th>No long-distance dispersal/ movement mechanisms</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.</td>
<td>Adaptations exist for long-distance dispersal, but studies report that most individuals (90%) establish territories within 5 miles of natal origin or within a distance twice the home range of the typical individual, and tend not to cross major barriers such as dams and watershed divides</td>
<td>1</td>
</tr>
<tr>
<td>C.</td>
<td>Adaptations exist for long-distance dispersal, movement and evidence that offspring often disperse greater than 5 miles of natal origin or greater than twice the home range of typical individual and will cross major barriers such as dams and watershed divides</td>
<td>2</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown</td>
<td>1</td>
</tr>
</tbody>
</table>

Score: 1
2.4. Practical potential to be spread by human activities, both directly and indirectly – possible vectors include: commercial bait sales, deliberate illegal stocking, aquaria releases, boat trailers, canals, ballast water exchange, live food trade, rehabilitation, pest control industry, aquaculture escapes, etc.)

A. Does not occur 0
B. Low (human dispersal to new areas occurs almost exclusively by direct means and is infrequent or inefficient) 1
C. Moderate (human dispersal to new areas occurs by direct and indirect means to a moderate extent) 2
D. High (opportunities for human dispersal to new areas by direct and indirect means are numerous, frequent, and successful) 4
U. Unknown

Documentation:
Identify dispersal mechanisms:
Can tightly seal opcurculum and withstand dessication.
Sources of information:
Solomon et al., 2010.

2.5. Non-living chemical and physical characteristics that increase competitive advantage (e.g., tolerance to various extremes, pH, DO, temperature, desiccation, fill vacant niche, charismatic species)

A. Possesses no characteristics that increase competitive advantage 0
B. Possesses one characteristic that increases competitive advantage 4
C. Possesses two or more characteristics that increase competitive advantage 8
U. Unknown

Documentation:
Evidence of competitive ability:
Tolerates desiccation, temperature and dissolved oxygen fluxuations, sodium concentration and pH.
Sources of information:
Kipp et al., 2013; Solomon et al., 2009;

2.6. Biological characteristics that increase competitive advantage (e.g., high fecundity, generalist/ broad niche space, highly evolved defense mechanisms, behavioral adaptations, piscivorous, etc.)

A. Possesses no characteristics that increase competitive advantage 0
B. Possesses one characteristic that increases competitive advantage 4
C. Possesses two or more characteristics that increase competitive advantage 8
U. Unknown

Documentation:
Evidence of competitive ability:
High fecundity, viviparous, generalist feeders. Exhibit predator-induced defensive
2.7. Other species in the family and/or genus invasive in New York or elsewhere?

A. No 0
B. Yes 2
U. Unknown 0

Score 2

Documentation:
Identify species:
Bellamya japonica

3. ECOLOGICAL AMPLITUDE AND DISTRIBUTION

3.1. Current introduced distribution in the northern latitudes of USA and southern latitude of Canada (e.g., between 35 and 55 degrees).

A. Not known from the northern US or southern Canada. 0
B. Established as a non-native in 1 northern USA state and/or southern Canadian province. 1
C. Established as a non-native in 2 or 3 northern USA states and/or southern Canadian provinces. 2
D. Established as a non-native in 4 or more northern USA states and/or southern Canadian provinces, and/or categorized as a problem species (e.g., “Invasive”) in 1 northern state or southern Canadian province. 3
U. Unknown 0

Score 3

Documentation:
Identify states and provinces:
ME, NH, VT, MA, CT, RI, PA, NJ, OH, IN, MI, WI, MN.
Sources of information:
• See known introduced range at www.usda.gov, and update with information from states and Canadian provinces.
Kipp et al., 2013.

3.2. Current introduced distribution of the species in natural areas in the eight New York State PRISMs (Partnerships for Regional Invasive Species Management)

A. Established in none of the PRISMs 0
B. Established in 1 PRISM 1
C. Established in 2 or 3 PRISMs 3
D. Established in 4 or more PRISMs 5
U. Unknown 0

Score 5

Documentation:
Describe distribution:
Capital/Mohawk, LIISMA, Lower Hudson, Finger Lakes, Western NY.
Sources of information:
Kipp et al., 2013; iMapInvasives, 2013.

3.3. Number of known, or potential (each individual possessed by a vendor or...
NEW YORK

FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

3.4. Current introduced population density, or distance to known occurrence, in northern USA and/or southern Canada.

<table>
<thead>
<tr>
<th>Score</th>
<th>Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No known populations established.</td>
</tr>
<tr>
<td>1</td>
<td>Low to moderate population density (e.g., (\leq 1/4) to (< 1/2) native population density) with few other invasives present and/or documented in 1 or more non-adjacent state/province and/or 1 unconnected waterbody.</td>
</tr>
<tr>
<td>2</td>
<td>High or irruptive population density (e.g., (\geq 1/2) native population density) with numerous other invasives present and/or documented in 1 or more adjacent state/province and/or 1 connected waterbody.</td>
</tr>
</tbody>
</table>

Sources of information:
- GISD, 2013; Havel, 2010; Solomon et al., 2010.

3.5. Number of habitats the species may invade

<table>
<thead>
<tr>
<th>Score</th>
<th>Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not known to invade any natural habitats given at A2.3.</td>
</tr>
<tr>
<td>2</td>
<td>Known to occur in 2 or 3 of the habitats given at A2.3, with at least 1 or 2 natural habitat(s).</td>
</tr>
<tr>
<td>3</td>
<td>Known to occur in 4 or more of the habitats given at A2.3, with at least 3 natural habitats.</td>
</tr>
</tbody>
</table>

Sources of information:
- GISD, 2013; Kipp et al., 2013.

3.6. Role of anthropogenic (human related) and natural disturbance in establishment (e.g. water level management, man-made structures, high vehicle traffic, major storm events, etc.)

<table>
<thead>
<tr>
<th>Score</th>
<th>Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Requires anthropogenic disturbances to establish.</td>
</tr>
<tr>
<td>2</td>
<td>May occasionally establish in undisturbed areas but can readily establish in areas with natural or anthropogenic disturbances.</td>
</tr>
</tbody>
</table>
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

C. Can establish independent of any known natural or anthropogenic disturbances. 3
U. Unknown. 3

Score 3

Documentation:
Identify type of disturbance:

Sources of information:

3.7. Climate in native range (e.g., med. to high, ≥5, Climaatch score; within 35 to 55 degree latitude; etc.)
A. Native range does not include climates similar to New York (e.g., <10%). 0
B. Native range possibly includes climates similar to portions of New York (e.g., 10-29%). 4
C. Native range includes climates similar to those in New York (e.g., ≥30%). 8
U. Unknown. 8

Score 8

Documentation:
Describe known climate similarities:
52/56 stations = or > 5. High similarity of climate.
Sources of information:
ADAFF, 2013.

Total Possible 30
Section Three Total 28

4. DIFFICULTY OF CONTROL

4.1. Re-establishment potential, nearby propagule source, known vectors of re-introduction (e.g. biological supplies, pets, aquaria, aquaculture facilities, connecting waters/ corridors, mechanized transportation, live wells, etc.)
A. No known vectors/ propagule source for re-establishment following removal. 0
B. Possible re-establishment from 1 vector/ propagule source following removal and/or viable <24 hours. 1
C. Likely to re-establish from 2-3 vectors/ propagule sources following removal and/or viable 2-7 days. 2
D. Strong potential for re-establishment from 4 or more vectors/ propagule sources following removal and/or viable >7 days. 3
U. Unknown.

Score 2

Documentation:
Identify source/ vectors:
Sold in Chinese food markets in the United States. Highly resistant to desiccation, giving potential for overland transport via boats (Havel, 2010). Highest densities found near boat launches and other anthropogenic dispersal vectors (Solomon et al., 2010).
Sources of information:
GISD, 2013; Havel, 2010; Solomon et al., 2010.

4.2. Status of monitoring and/ or management protocols for species
A. Standardized protocols appropriate to New York State are available. 0
B. Scientific protocols are available from other countries, regions or states. 1
C. No known protocols exist. 2
U. Unknown

Score 1
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

4.3. Status of monitoring and/or management resources (e.g. tools, manpower, travel, traps, lures, ID keys, taxonomic specialists, etc.)

A. Established resources are available including commercial and/or research tools
B. Monitoring resources may be available (e.g. partnerships, NGOs, etc)
C. No known monitoring resources are available
U. Unknown

Score 1

Documentation:
Describe protocols:
Sources of information:
CLMN, 2013.

4.4. Level of effort required

A. Management is not required. (e.g., species does not persist without repeated human mediated action.)
B. Management is relatively easy and inexpensive; invasive species can be maintained at low abundance causing little or no ecological harm. (e.g., 10 or fewer person-hours of manual effort can eradicate a local infestation in 1 year.)
C. Management requires a major short-term investment, and is logistically and politically challenging; eradication is difficult, but possible. (e.g., 100 or fewer person-hours/year of manual effort, or up to 10 person-hours/year for 2-5 years to suppress a local infestation.)
D. Management requires a major investment and is logistically and politically difficult; eradication may be impossible. (e.g., more than 100 person-hours/year of manual effort, or more than 10 person hours/year for more than 5 years to suppress a local infestation.)
U. Unknown

Score 3

Documentation:
Describe resources:
Resources available (Rixon et al., 2005).
Sources of information:
Rixon et al., 2005.

C. STATUS OF GENETIC VARIANTS AND HYBRIDS:

At the present time there is no protocol or criteria for assessing the invasiveness of genetic variants independent of the species to which they belong. Such a protocol is needed, and individuals with the appropriate expertise should address this issue in the future. Such a protocol will likely require data on cultivar fertility and identification in both experimental and natural settings.

Genetic variants of the species known to exist: C. japonica may or may not be a separate species.
Hybrids (crosses between different parent species) should be assessed individually and separately from the parent species wherever taxonomically possible, since their invasiveness may differ from that of the parent species. An exception should be made if the taxonomy of the species and hybrids are uncertain, and species and hybrids can not be clearly distinguished in the field. In such cases it is not feasible to distinguish species and hybrids, and they can only be assessed as a single unit.

Hybrids of uncertain origin known to exist:

References for species assessment:

Citation: The New York Fish & Aquatic Invertebrate Invasiveness Ranking Form is an adaptation of the New York Plant Invasiveness Ranking Form. The original plant form may be cited as: Jordan, M.J., G. Moore and T.W. Weldy. 2008. Invasiveness ranking system for non-native plants of New York. Unpublished. The Nature Conservancy, Cold Spring Harbor, NY; Brooklyn Botanic Garden, Brooklyn, NY; The Nature Conservancy, Albany, NY.

Acknowledgments: The New York Fish and Aquatic Invertebrate Invasiveness Ranking Form incorporates components and approaches used in several other systems, cited in the references below. Valuable contributions by members of the Invasive Species Council and Invasive Species Advisory Committee were incorporated in revisions of this form. Members of the Office of Invasive Species Coordination’s Four-tier Team, who coordinated the effort, included representatives of the New York State Department of Environmental Conservation* (Division of Fish, Wildlife and Marine Resources, Division of Lands and Forests, Division of Water); The Nature Conservancy; New York Natural Heritage Program; New York Sea Grant*; Lake Champlain Sea Grant*; New York State Department of Agriculture and Markets (Division of Plant Industry and Division of Animal Industry); Cornell University (Department of Natural Resources and Department of Entomology); New York State Nursery and Landscape Association; New York Farm Bureau; Brooklyn Botanic Garden; Pet Industry Joint Advisory Council*; Trout Unlimited*; United States Department of Agriculture Animal and Plant Health Inspection Service (Plant Protection and Quarantine and Wildlife Services); New York State Department of Transportation; State University of New York at Albany and Plattsburgh*; and Cary Institute of Ecosystem Studies. Those organizations listed with an asterisk comprised the Fish and Aquatic Invertebrate Working Group.

References for ranking form:

Natural Resources Board Order No. IS-34-06, Invasive Species Identification, Classification and Control. 2008. Wisconsin Department of Natural Resources, Madison Wisconsin.

Standard Methodology to Assess the Risks From Non-native Species Considered Possible Problems to the Environment. 2005. DEFRA.
