Scientific name: *Galium odoratum* (L.) Scop. (*Asperula odorata* L.) USDA Plants Code: GAOD3
Common names: Sweet bedstraw
Native distribution: Europe, temperate Asia
Date assessed: October 30, 2008
Assessors: Steven Clemants, Gerry Moore
Reviewers: LIISMA SRC
Date Approved: 8 July 2009 Form version date: 3 March 2009

New York Invasiveness Rank: Low (Relative Maximum Score 40.00-49.99)

<table>
<thead>
<tr>
<th>Status of this species in each PRISM:</th>
<th>Current Distribution</th>
<th>PRISM Invasiveness Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adirondack Park Invasive Program</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>2 Capital/Mohawk</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>3 Catskill Regional Invasive Species Partnership</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>4 Finger Lakes</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>5 Long Island Invasive Species Management Area</td>
<td>Restricted</td>
<td>Moderate</td>
</tr>
<tr>
<td>6 Lower Hudson</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>7 Saint Lawrence/Eastern Lake Ontario</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>8 Western New York</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Invasiveness Ranking Summary

<table>
<thead>
<tr>
<th></th>
<th>Total (Total Answered*) Possible</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ecological impact</td>
<td>40 (30)</td>
<td>9</td>
</tr>
<tr>
<td>2 Biological characteristic and dispersal ability</td>
<td>25 (25)</td>
<td>14</td>
</tr>
<tr>
<td>3 Ecological amplitude and distribution</td>
<td>25 (25)</td>
<td>16</td>
</tr>
<tr>
<td>4 Difficulty of control</td>
<td>10 (10)</td>
<td>4</td>
</tr>
<tr>
<td>Outcome score</td>
<td>100 (90)</td>
<td>43a</td>
</tr>
</tbody>
</table>

*For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.”

†Calculated as $100(a/b)$ to two decimal places.

§Very High >80.00; High 70.00−80.00; Moderate 50.00−69.99; Low 40.00−49.99; Insignificant <40.00

A. DISTRIBUTION (KNOWN/POTENTIAL): Summarized from individual PRISM forms

A1.1. Has this species been documented to persist without cultivation in NY? (reliable source; voucher not required) □ Yes – continue to A1.2
□ No – continue to A2.1

A1.2. In which PRISMs is it known (see inset map)? □ Adirondack Park Invasive Program
□ Capital/Mohawk
□ Catskill Regional Invasive Species Partnership
□ Finger Lakes
□ Long Island Invasive Species Management Area
□ Lower Hudson
□ Saint Lawrence/Eastern Lake Ontario
□ Western New York

Documentation:
NEW YORK

NON-NATIVE PLANT INVASIVENESS RANKING FORM

<table>
<thead>
<tr>
<th>Sources of information:</th>
<th></th>
</tr>
</thead>
</table>

A2.1. What is the likelihood that this species will occur and persist outside of cultivation, given the climate in the following PRISMs? (obtain from PRISM invasiveness ranking form)

<table>
<thead>
<tr>
<th>Location</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adirondack Park Invasive Program</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Capital/Mohawk</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Catskill Regional Invasive Species Partnership</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Finger Lakes</td>
<td>Very Likely</td>
</tr>
<tr>
<td>Long Island Invasive Species Management Area</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Lower Hudson</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Saint Lawrence/Eastern Lake Ontario</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Western New York</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Documentation:

Sources of information (e.g.: distribution models, literature, expert opinions):

Brooklyn Botanic Garden, 2008; Weldy & Werier, 2005.

If the species does not occur and is not likely to occur with any of the PRISMs, then stop here as there is no need to assess the species.

A2.2. What is the current distribution of the species in each PRISM? (obtain rank from PRISM invasiveness ranking forms)

<table>
<thead>
<tr>
<th>Location</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adirondack Park Invasive Program</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Capital/Mohawk</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Catskill Regional Invasive Species Partnership</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Finger Lakes</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Long Island Invasive Species Management Area</td>
<td>Restricted</td>
</tr>
<tr>
<td>Lower Hudson</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Saint Lawrence/Eastern Lake Ontario</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>Western New York</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Documentation:

Sources of information:

Brooklyn Botanic Garden, 2008; Weldy & Werier, 2005.

A2.3. Describe the potential or known suitable habitats within New York. Natural habitats include all habitats not under active human management. Managed habitats are indicated with an asterisk.

<table>
<thead>
<tr>
<th>Aquatic Habitats</th>
<th>Wetland Habitats</th>
<th>Upland Habitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊗ Salt/brackish waters</td>
<td>⊗ Salt/brackish marshes</td>
<td>☒ Cultivated*</td>
</tr>
<tr>
<td>⊗ Freshwater tidal</td>
<td>⊗ Freshwater marshes</td>
<td>☒ Grasslands/old fields</td>
</tr>
<tr>
<td>⊗ Rivers/streams</td>
<td>⊗ Peatlands</td>
<td>☒ Shrublands</td>
</tr>
<tr>
<td>⊗ Natural lakes and ponds</td>
<td>⊗ Shrub swamps</td>
<td>☒ Forests/woodlands</td>
</tr>
<tr>
<td>⊗ Vernal pools</td>
<td>⊗ Forested wetlands/riparian</td>
<td>☒ Alpine</td>
</tr>
<tr>
<td>⊗ Reservoirs/impoundments*</td>
<td>⊗ Ditches*</td>
<td>☒ Roadsides*</td>
</tr>
</tbody>
</table>

Other potential or known suitable habitats within New York:

<table>
<thead>
<tr>
<th>Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources of information:</td>
</tr>
<tr>
<td>Brooklyn Botanic Garden, 2009.</td>
</tr>
</tbody>
</table>
B. INVASIVENESS RANKING
Questions apply to areas similar in climate and habitats to New York unless specified otherwise.

1. ECOLOGICAL IMPACT

1.1. Impact on Natural Ecosystem Processes and System-Wide Parameters (e.g. fire regime, geomorphological changes (erosion, sedimentation rates), hydrologic regime, nutrient and mineral dynamics, light availability, salinity, pH)

A. No perceivable impact on ecosystem processes based on research studies, or the absence of impact information if a species is widespread (>10 occurrences in minimally managed areas), has been well-studied (>10 reports/publications), and has been present in the northeast for >100 years. 0
B. Influences ecosystem processes to a minor degree (e.g., has a perceivable but mild influence on soil nutrient availability) 3
C. Significant alteration of ecosystem processes (e.g., increases sedimentation rates along streams or coastlines, reduces open water that are important to waterfowl) 7
D. Major, possibly irreversible, alteration or disruption of ecosystem processes (e.g., the species alters geomorphology and/or hydrology, affects fire frequency, alters soil pH, or fixes substantial levels of nitrogen in the soil making soil unlikely to support certain native plants or more likely to favor non-native species) 10
U. Unknown

Documentation:
Identify ecosystem processes impacted (or if applicable, justify choosing answer A in the absence of impact information)
In a study in Sweden it was concluded that G. odoratum may concentrate aluminum in its leaves, reducing the levels of aluminum in the soil (Falkengren-Grerup 1994). Large stands not noted and influence on soil nutrient availability is probably mild. Stands can be quite dense with lush growth thus limiting light availability to herbs below.
Sources of information:
Falkengren-Grerup, 1994; authors' pers. obs.

Score 3

1.2. Impact on Natural Community Structure

A. No perceived impact; establishes in an existing layer without influencing its structure 0
B. Influences structure in one layer (e.g., changes the density of one layer) 3
C. Significant impact in at least one layer (e.g., creation of a new layer or elimination of an existing layer) 7
D. Major alteration of structure (e.g., covers canopy, eradicating most or all layers below) 10
U. Unknown

Documentation:
Identify type of impact or alteration:
Can change the density in the herb layer. No evidence of significant impact to or major alteration of structure. It does no harm to any plants more than 60cm tall (Plants for a Future 2008).
Sources of information:
Plants for a Future, 2008; author's pers. obs.

Score 3

1.3. Impact on Natural Community Composition

A. No perceived impact; causes no apparent change in native populations 0
B. Influences community composition (e.g., reduces the number of individuals in one or more native species in the community) 3
C. Significantly alters community composition (e.g., produces a significant reduction in the population size of one or more native species in the community) 7
New York
NON-NATIVE PLANT INVASIVENESS RANKING FORM

D. Causes major alteration in community composition (e.g., results in the extirpation of one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community)

<table>
<thead>
<tr>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

U. Unknown

<table>
<thead>
<tr>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Documentation:
- Identify type of impact or alteration:
 - Stands can reduce the number of individuals of native species in the community. No evidence for significant or major effects to community composition
- Sources of information:
 - Authors' pers. obs.

1.4. Impact on other species or species groups (cumulative impact of this species on the animals, fungi, microbes, and other organisms in the community it invades.

Examples include reduction in nesting/foraging sites; reduction in habitat connectivity; injurious components such as spines, thorns, burrs, toxins; suppresses soil/sediment microflora; interferes with native pollinators and/or pollination of a native species; hybridizes with a native species; hosts a non-native disease which impacts a native species)

<table>
<thead>
<tr>
<th>A. Negligible perceived impact</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Minor impact</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Moderate impact</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D. Severe impact on other species or species groups</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U. Unknown</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
</tr>
</tbody>
</table>

Documentation:
- Identify type of impact or alteration:
 - Studies on impacts to other species groups not known.
- Sources of information:
 - Authors' pers. comm.

2. BIOLOGICAL CHARACTERISTICS AND DISPERSAL ABILITY

2.1. Mode and rate of reproduction (provisional thresholds, more investigation needed)

<table>
<thead>
<tr>
<th>A. No reproduction by seeds or vegetative propagules (i.e. plant sterile with no sexual or asexual reproduction).</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Limited reproduction (fewer than 10 viable seeds per plant AND no vegetative reproduction; if viability is not known, then maximum seed production is less than 100 seeds per plant and no vegetative reproduction)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Moderate reproduction (fewer than 100 viable seeds per plant - if viability is not known, then maximum seed production is less than 1000 seeds per plant - OR limited successful vegetative spread documented)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D. Abundant reproduction with vegetative asexual spread documented as one of the plants prime reproductive means OR more than 100 viable seeds per plant (if viability is not known, then maximum seed production reported to be greater than 1000 seeds per plant.)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U. Unknown</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Documentation:
- Describe key reproductive characteristics (including seeds per plant):
 - Examination of herbarium material suggests individuals can produce more than 100 but less
NEW YORK
NON-NATIVE PLANT INVASIVENESS RANKING FORM

| than 1000 seeds; viability not known. | Sources of information: |
| Authors' pers. obs. |

2.2. Innate potential for long-distance dispersal (e.g. bird dispersal, sticks to animal hair, buoyant fruits, pappus for wind-dispersal)

A. Does not occur (no long-distance dispersal mechanisms)	0
B. Infrequent or inefficient long-distance dispersal (occurs occasionally despite lack of adaptations)	1
C. Moderate opportunities for long-distance dispersal (adaptations exist for long-distance dispersal, but studies report that 95% of seeds land within 100 meters of the parent plant)	2
D. Numerous opportunities for long-distance dispersal (adaptations exist for long-distance dispersal and evidence that many seeds disperse greater than 100 meters from the parent plant)	4

Documentation:
Identify dispersal mechanisms:
Seeds may be dispersed by animals (epizoochory) but apparently not very efficient (Ziegenhagen et al. 2003).

| Score | 1 |

2.3. Potential to be spread by human activities (both directly and indirectly – possible mechanisms include: commercial sales, use as forage/revegetation, spread along highways, transport on boats, contaminated compost, land and vegetation management equipment such as mowers and excavators, etc.)

A. Does not occur	0
B. Low (human dispersal to new areas occurs almost exclusively by direct means and is infrequent or inefficient)	1
C. Moderate (human dispersal to new areas occurs by direct and indirect means to a moderate extent)	2
D. High (opportunities for human dispersal to new areas by direct and indirect means are numerous, frequent, and successful)	3

Documentation:
Identify dispersal mechanisms:
Sold as an ornamental plant (Kemper Center 2008). Also seeds may become attached to clothing.

| Score | 2 |

2.4. Characteristics that increase competitive advantage, such as shade tolerance, ability to grow on infertile soils, perennial habit, fast growth, nitrogen fixation, allelopathy, etc.

A. Possesses no characteristics that increase competitive advantage	0
B. Possesses one characteristic that increases competitive advantage	3
C. Possesses two or more characteristics that increase competitive advantage	6

Documentation:
Evidence of competitive ability:
Perennial (Weldy & Werier 2005), some light shade tolerance (Plants for a Future 2008).
New York
NON-NATIVE PLANT INVASIVENESS RANKING FORM

Sources of information:

2.5. Growth vigor

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Does not form thickets or have a climbing or smothering growth habit</td>
</tr>
<tr>
<td>B.</td>
<td>Has climbing or smothering growth habit, forms a dense layer above shorter vegetation, forms dense thickets, or forms a dense floating mat in aquatic systems where it smother other vegetation or organisms</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Documentation:
Describe growth form:
Not observed to climb, exhibit smothering growth, or form thickets.
Sources of information:
Kemper Center, 2008.

2.6. Germination/Regeneration

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Requires open soil or water and disturbance for seed germination, or regeneration from vegetative propagules.</td>
</tr>
<tr>
<td>B.</td>
<td>Can germinate/regenerate in vegetated areas but in a narrow range or in special conditions</td>
</tr>
<tr>
<td>C.</td>
<td>Can germinate/regenerate in existing vegetation in a wide range of conditions</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown (No studies have been completed)</td>
</tr>
</tbody>
</table>

Documentation:
Describe germination requirements:
Soil or existing vegetation did not affect germination in a German study (Graaea et al. 2004).
Sources of information:
Graaea et al., 2004.

2.7. Other species in the genus invasive in New York or elsewhere

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>No</td>
</tr>
<tr>
<td>B.</td>
<td>Yes</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Documentation:
Species:
Other non-native species include Galium aristatum, G. mollugo. None listed as invasive.
Sources of information:

Total Possible 25
Section Two Total 14

3. ECOLOGICAL AMPLITUDE AND DISTRIBUTION

3.1. Density of stands in natural areas in the northeastern USA and eastern Canada
(use same definition as Gleason & Cronquist which is: “The part of the United States covered extends from the Atlantic Ocean west to the western boundaries of Minnesota, Iowa, northern Missouri, and southern Illinois, south to the southern boundaries of Virginia, Kentucky, and Illinois, and south to the Missouri River in Missouri. In Canada the area covered includes Nova Scotia, Prince Edward Island, New Brunswick, and parts of Quebec and Ontario lying south of the 47th parallel of latitude”)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>No large stands (no areas greater than 1/4 acre or 1000 square meters)</td>
</tr>
</tbody>
</table>
B. Large dense stands present in areas with numerous invasive species already present or disturbed landscapes 2
C. Large dense stands present in areas with few other invasive species present (i.e. ability to invade relatively pristine natural areas) 4
U. Unknown

Documentation:
Identify reason for selection, or evidence of weedy history:
Not noted to form stands greater than 0.25 acres, although plant has only been occasionally encountered.
Sources of information:
Authors’ pers. obs.

3.2. Number of habitats the species may invade
A. Not known to invade any natural habitats given at A2.3 0
B. Known to occur in two or more of the habitats given at A2.3, with at least one a natural habitat. 1
C. Known to occur in three or more of the habitats given at A2.3, with at least two a natural habitat. 2
D. Known to occur in four or more of the habitats given at A2.3, with at least three a natural habitat. 4
E. Known to occur in more than four of the habitats given at A2.3, with at least four a natural habitat. 6
U. Unknown

Documentation:
Identify type of habitats where it occurs and degree/type of impacts:
See A2.3.
Sources of information:

3.3. Role of disturbance in establishment
A. Requires anthropogenic disturbances to establish. 0
B. May occasionally establish in undisturbed areas but can readily establish in areas with natural or anthropogenic disturbances. 2
C. Can establish independent of any known natural or anthropogenic disturbances. 4
U. Unknown

Documentation:
Identify type of disturbance:
Establishes in disturbed areas; no evidence that it requires anthropogenic disturbance or that it can establish independent of any known disturbance.
Sources of information:
Authors’ pers. obs.

3.4. Climate in native range
A. Native range does not include climates similar to New York 0
B. Native range possibly includes climates similar to at least part of New York. 1
C. Native range includes climates similar to those in New York 3
U. Unknown

Documentation:
Describe what part of the native range is similar in climate to New York:
Native to Europe and temperate Asia as far north as Finland.
Sources of information:
GRIN, 2008; Brooklyn Botanic Garden, 2008.

3.5. Current introduced distribution in the northeastern USA and eastern Canada (see question 3.1 for definition of geographic scope)

A. Not known from the northeastern US and adjacent Canada 0
B. Present as a non-native in one northeastern USA state and/or eastern Canadian province. 1
C. Present as a non-native in 2 or 3 northeastern USA states and/or eastern Canadian provinces. 2
D. Present as a non-native in 4–8 northeastern USA states and/or eastern Canadian provinces, and/or categorized as a problem weed (e.g., “Noxious” or “Invasive”) in 1 northeastern state or eastern Canadian province. 3
E. Present as a non-native in >8 northeastern USA states and/or eastern Canadian provinces, and/or categorized as a problem weed (e.g., “Noxious” or “Invasive”) in 2 northeastern states or eastern Canadian provinces. 4
U. Unknown

Documentation:
Identify states and provinces invaded:
PQ, ON, MA, RI, NY, NJ, PA, MD, DE, VA, OH, MI, MN.
Sources of information: See known introduced range in plants.usda.gov, and update with information from states and Canadian provinces.

Score 4

3.6. Current introduced distribution of the species in natural areas in the eight New York State PRISMs (Partnerships for Regional Invasive Species Management)

A. Present in none of the PRISMs 0
B. Present in 1 PRISM 1
C. Present in 2 PRISMs 2
D. Present in 3 PRISMs 3
E. Present in more than 3 PRISMs or on the Federal noxious weed lists 4
U. Unknown

Documentation:
Describe distribution:
See A1.1.
Sources of information: Brooklyn Botanic Garden, 2008; Weldy & Werier, 2005.

Score 3

Total Possible 25
Section Three Total 16

4. DIFFICULTY OF CONTROL

4.1. Seed banks
A. Seeds (or vegetative propagules) remain viable in soil for less than 1 year, or does not make viable seeds or persistent propagules. 0
B. Seeds (or vegetative propagules) remain viable in soil for at least 1 to 10 years 2
C. Seeds (or vegetative propagules) remain viable in soil for more than 10 years 3
U. Unknown
NEW YORK
NON-NATIVE PLANT INVASIVENESS RANKING FORM

Score 2

Documentation:
Identify longevity of seed bank:
Seeds known to survive over a year; no evidence for viability for greater than 10 years.
Sources of information:
Kjellsson, 1992

4.2. Vegetative regeneration
A. No regrowth following removal of aboveground growth 0
B. Regrowth from ground-level meristems 1
C. Regrowth from extensive underground system 2
D. Any plant part is a viable propagule 3
U. Unknown

Score 2

Documentation:
Describe vegetative response:
Plant can resprout from extensive underground rhizomes.
Sources of information:
Author's pers. obs.

4.3. Level of effort required
A. Management is not required: e.g., species does not persist without repeated anthropogenic disturbance. 0
B. Management is relatively easy and inexpensive: e.g. 10 or fewer person-hours of manual effort (pulling, cutting and/or digging) can eradicate a 1 acre infestation in 1 year (infestation averages 50% cover or 1 plant/100 ft²). 2
C. Management requires a major short-term investment: e.g. 100 or fewer person-hours/year of manual effort, or up to 10 person-hours/year using mechanical equipment (chain saws, mowers, etc.) for 2-5 years to suppress a 1 acre infestation. Eradication is difficult, but possible (infestation as above). 3
D. Management requires a major investment: e.g. more than 100 person-hours/year of manual effort, or more than 10 person hours/year using mechanical equipment, or the use of herbicide, grazing animals, fire, etc. for more than 5 years to suppress a 1 acre infestation. Eradication may be impossible (infestation as above). 4
U. Unknown

Score 0

Documentation:
Identify types of control methods and time-term required:
Plants can be mowed with a rotary mower (Kemper Center 2008). Currently, however, there is no known need to manage this plant in New York or elsewhere in the Northeast.
Sources of information:
Kemper Center, 2008

Total Possible 10
Section Four Total 4

Total for 4 sections Possible 90
Total for 4 sections 43

C. STATUS OF CULTIVARS AND HYBRIDS:

At the present time (May 2008) there is no protocol or criteria for assessing the invasiveness of cultivars independent of the species to which they belong. Such a protocol is needed, and individuals with the
appropriate expertise should address this issue in the future. Such a protocol will likely require data on
cultivar fertility and identification in both experimental and natural settings.

Hybrids (crosses between different parent species) should be assessed individually and separately from
the parent species wherever taxonomically possible, since their invasiveness may differ from that of the
parent species. An exception should be made if the taxonomy of the species and hybrids are uncertain,
and species and hybrids can not be clearly distinguished in the field. In such cases it is not feasible to
distinguish species and hybrids, and they can only be assessed as a single unit.

Some cultivars of the species known to be available:

References for species assessment:

Graae, B.J., T. Hansen and P.B. Sunde. 2004. The importance of recruitment limitation in forest plant
species colonization: a seed sowing experiment. Flora - Morphology, Distribution, Functional Ecology of
Plants 199(3): 263-270.

Kjellsson, G. 1992. Seed Banks in Danish Deciduous Forests: Species Composition, Seed Influx and

Information Network (GRIN) Online Database. National Germplasm Resources Laboratory, Beltsville,

United States Department of Agriculture, National Resources Conservation Service. 2008. The PLANTS
Database. National Plant Data Center, Baton Rouge, Louisiana. <plants.usda.gov>. [Accessessed on
10/31/2008.]

(original application development), Florida Center for Community Design and Research. University of
October 30, 2008.]

of Maternal Lineages and Clones of Galium odoratum in a Large Ancient Woodland: Inferences about
Citation: This NY ranking form may be cited as: Jordan, M.J., G. Moore and T.W. Weldy. 2008. Invasiveness ranking system for non-native plants of New York. Unpublished. The Nature Conservancy, Cold Spring Harbor, NY; Brooklyn Botanic Garden, Brooklyn, NY; The Nature Conservancy, Albany, NY. Note that the order of authorship is alphabetical; all three authors contributed substantially to the development of this protocol.

Acknowledgments: The NY form incorporates components and approaches used in several other systems, cited in the references below. Valuable contributions by members of the Long Island Invasive Species Management Area’s Scientific Review Committee were incorporated in revisions of this form. Original members of the LIISMA SRC included representatives of the Brooklyn Botanic Garden; The Nature Conservancy; New York Natural Heritage Program, New York Sea Grant; New York State Office of Parks, Recreation and Historic Preservation; National Park Service; Brookhaven National Laboratory; New York State Department of Environmental Conservation Region 1; Cornell Cooperative Extension of Suffolk/Nassau Counties; Long Island Nursery and Landscape Association; Long Island Farm Bureau; SUNY Farmingdale Ornamental Horticulture Department; Queens College Biology Department; Long Island Botanical Society; Long Island Weed Information Management System database manager; Suffolk County Department of Parks, Recreation and Conservation; Nassau County Department of Parks, Recreation and Museums; Suffolk County Soil & Water Conservation District.

References for ranking form:

